Debugging C++ Coroutines — Clang 17.0.0git documentation (2023)

  • Introduction
  • Terminology
    • coroutine type
    • coroutine
    • coroutine frame
  • The structure of coroutine frames
  • Print promise_type
  • Print coroutine frames
    • Examples to print coroutine frames
  • Get the suspended points
  • Get the asynchronous stack
    • Examples to print asynchronous stack
  • Get the living coroutines


For performance and other architectural reasons, the C++ Coroutines feature inthe Clang compiler is implemented in two parts of the compiler. Semanticanalysis is performed in Clang, and Coroutine construction and optimizationtakes place in the LLVM middle-end.

However, this design forces us to generate insufficient debugging information.Typically, the compiler generates debug information in the Clang frontend, asdebug information is highly language specific. However, this is not possiblefor Coroutine frames because the frames are constructed in the LLVM middle-end.

To mitigate this problem, the LLVM middle end attempts to generate some debuginformation, which is unfortunately incomplete, since much of the languagespecific information is missing in the middle end.

This document describes how to use this debug information to better debugcoroutines.


Due to the recent nature of C++20 Coroutines, the terminology used to describethe concepts of Coroutines is not settled. This section defines a common,understandable terminology to be used consistently throughout this document.

coroutine type

A coroutine function is any function that contains any of the CoroutineKeywords co_await, co_yield, or co_return. A coroutine type is apossible return type of one of these coroutine functions. Task andGenerator are commonly referred to coroutine types.


By technical definition, a coroutine is a suspendable function. However,programmers typically use coroutine to refer to an individual instance.For example:

std::vector<Task> Coros; // Task is a coroutine type.for (int i = 0; i < 3; i++) Coros.push_back(CoroTask()); // CoroTask is a coroutine function, which // would return a coroutine type 'Task'.

In practice, we typically say “Coros contains 3 coroutines” in the aboveexample, though this is not strictly correct. More technically, this shouldsay “Coros contains 3 coroutine instances” or “Coros contains 3 coroutineobjects.”

In this document, we follow the common practice of using coroutine to referto an individual coroutine instance, since the terms coroutine instance andcoroutine object aren’t sufficiently defined in this case.

coroutine frame

The C++ Standard uses coroutine state to describe the allocated storage. Inthe compiler, we use coroutine frame to describe the generated data structurethat contains the necessary information.

The structure of coroutine frames

The structure of coroutine frames is defined as:

struct { void (*__r)(); // function pointer to the `resume` function void (*__d)(); // function pointer to the `destroy` function promise_type; // the corresponding `promise_type` ... // Any other needed information}

In the debugger, the function’s name is obtainable from the address of thefunction. And the name of resume function is equal to the name of thecoroutine function. So the name of the coroutine is obtainable once theaddress of the coroutine is known.

Print promise_type

Every coroutine has a promise_type, which defines the behaviorfor the corresponding coroutine. In other words, if two coroutines have thesame promise_type, they should behave in the same way.To print a promise_type in a debugger when stopped at a breakpoint inside acoroutine, printing the promise_type can be done by:

print __promise

It is also possible to print the promise_type of a coroutine from the addressof the coroutine frame. For example, if the address of a coroutine frame is0x416eb0, and the type of the promise_type is task::promise_type, printingthe promise_type can be done by:

print (task::promise_type)*(0x416eb0+0x10)

This is possible because the promise_type is guaranteed by the ABI to be at a16 bit offset from the coroutine frame.

Note that there is also an ABI independent method:

print std::coroutine_handle<task::promise_type>::from_address((void*)0x416eb0).promise()

The functions from_address(void*) and promise() are often small enough tobe removed during optimization, so this method may not be possible.

Print coroutine frames

LLVM generates the debug information for the coroutine frame in the LLVM middleend, which permits printing of the coroutine frame in the debugger. Much likethe promise_type, when stopped at a breakpoint inside a coroutine we canprint the coroutine frame by:

print __coro_frame

Just as printing the promise_type is possible from the coroutine address,printing the details of the coroutine frame from an address is also possible:

(gdb) # Get the address of coroutine frame(gdb) print/x *0x418eb0$1 = 0x4019e0(gdb) # Get the linkage name for the coroutine(gdb) x 0x4019e00x4019e0 <_ZL9coro_taski>: 0xe5894855(gdb) # Turn off the demangler temporarily to avoid the debugger misunderstanding the name.(gdb) set demangle-style none(gdb) # The coroutine frame type is 'linkage_name.coro_frame_ty'(gdb) print ('_ZL9coro_taski.coro_frame_ty')*(0x418eb0)$2 = {__resume_fn = 0x4019e0 <coro_task(int)>, __destroy_fn = 0x402000 <coro_task(int)>, __promise = {...}, ...}

The above is possible because:

(1) The name of the debug type of the coroutine frame is the linkage_name,plus the .coro_frame_ty suffix because each coroutine function shares thesame coroutine type.

(2) The coroutine function name is accessible from the address of the coroutineframe.

The above commands can be simplified by placing them in debug scripts.

Examples to print coroutine frames

The print examples below use the following definition:

#include <coroutine>#include <iostream>struct task{ struct promise_type { task get_return_object() { return std::coroutine_handle<promise_type>::from_promise(*this); } std::suspend_always initial_suspend() { return {}; } std::suspend_always final_suspend() noexcept { return {}; } void return_void() noexcept {} void unhandled_exception() noexcept {} int count = 0; }; void resume() noexcept { handle.resume(); } task(std::coroutine_handle<promise_type> hdl) : handle(hdl) {} ~task() { if (handle) handle.destroy(); } std::coroutine_handle<> handle;};class await_counter : public std::suspend_always { public: template<class PromiseType> void await_suspend(std::coroutine_handle<PromiseType> handle) noexcept { handle.promise().count++; }};static task coro_task(int v) { int a = v; co_await await_counter{}; a++; std::cout << a << "\n"; a++; std::cout << a << "\n"; a++; std::cout << a << "\n"; co_await await_counter{}; a++; std::cout << a << "\n"; a++; std::cout << a << "\n";}int main() { task t = coro_task(43); t.resume(); t.resume(); t.resume(); return 0;}

In debug mode (O0 + g), the printing result would be:

{__resume_fn = 0x4019e0 <coro_task(int)>, __destroy_fn = 0x402000 <coro_task(int)>, __promise = {count = 1}, v = 43, a = 45, __coro_index = 1 '001', struct_std__suspend_always_0 = {__int_8 = 0 '000'}, class_await_counter_1 = {__int_8 = 0 '000'}, class_await_counter_2 = {__int_8 = 0 '000'}, struct_std__suspend_always_3 = {__int_8 = 0 '000'}}

In the above, the values of v and a are clearly expressed, as are thetemporary values for await_counter (class_await_counter_1 andclass_await_counter_2) and std::suspend_always (struct_std__suspend_always_0 and struct_std__suspend_always_3). The indexof the current suspension point of the coroutine is emitted as __coro_index.In the above example, the __coro_index value of 1 means the coroutinestopped at the second suspend point (Note that __coro_index is zero indexed)which is the first co_await await_counter{}; in coro_task. Note that thefirst initial suspend point is the compiler generatedco_await promise_type::initial_suspend().

However, when optimizations are enabled, the printed result changes drastically:

{__resume_fn = 0x401280 <coro_task(int)>, __destroy_fn = 0x401390 <coro_task(int)>, __promise = {count = 1}, __int_32_0 = 43, __coro_index = 1 '001'}

Unused values are optimized out, as well as the name of the local variable a.The only information remained is the value of a 32 bit integer. In this simplecase, it seems to be pretty clear that __int_32_0 represents a. However, itis not true.

An important note with optimization is that the value of a variable may notproperly express the intended value in the source code. For example:

static task coro_task(int v) { int a = v; co_await await_counter{}; a++; // __int_32_0 is 43 here std::cout << a << "\n"; a++; // __int_32_0 is still 43 here std::cout << a << "\n"; a++; // __int_32_0 is still 43 here! std::cout << a << "\n"; co_await await_counter{}; a++; // __int_32_0 is still 43 here!! std::cout << a << "\n"; a++; // Why is __int_32_0 still 43 here? std::cout << a << "\n";}

When debugging step-by-step, the value of __int_32_0 seemingly does notchange, despite being frequently incremented, and instead is always 43.While this might be surprising, this is a result of the optimizer recognizingthat it can eliminate most of the load/store operations. The above code getsoptimized to the equivalent of:

static task coro_task(int v) { store v to __int_32_0 in the frame co_await await_counter{}; a = load __int_32_0 std::cout << a+1 << "\n"; std::cout << a+2 << "\n"; std::cout << a+3 << "\n"; co_await await_counter{}; a = load __int_32_0 std::cout << a+4 << "\n"; std::cout << a+5 << "\n";}

It should now be obvious why the value of __int_32_0 remains unchangedthroughout the function. It is important to recognize that __int_32_0does not directly correspond to a, but is instead a variable generatedto assist the compiler in code generation. The variables in an optimizedcoroutine frame should not be thought of as directly representing thevariables in the C++ source.

Get the suspended points

An important requirement for debugging coroutines is to understand suspendedpoints, which are where the coroutine is currently suspended and awaiting.

For simple cases like the above, inspecting the value of the __coro_indexvariable in the coroutine frame works well.

However, it is not quite so simple in really complex situations. In thesecases, it is necessary to use the coroutine libraries to insert theline-number.

For example:

// For all the promise_type we want:class promise_type { ...+ unsigned line_number = 0xffffffff;};#include <source_location>// For all the awaiter types we need:class awaiter { ... template <typename Promise> void await_suspend(std::coroutine_handle<Promise> handle, std::source_location sl = std::source_location::current()) { ... handle.promise().line_number = sl.line(); }};

In this case, we use std::source_location to store the line number of theawait inside the promise_type. Since we can locate the coroutine functionfrom the address of the coroutine, we can identify suspended points this wayas well.

The downside here is that this comes at the price of additional runtime cost.This is consistent with the C++ philosophy of “Pay for what you use”.

Get the asynchronous stack

Another important requirement to debug a coroutine is to print the asynchronousstack to identify the asynchronous caller of the coroutine. As manyimplementations of coroutine types store std::coroutine_handle<> continuationin the promise type, identifying the caller should be trivial. Thecontinuation is typically the awaiting coroutine for the current coroutine.That is, the asynchronous parent.

Since the promise_type is obtainable from the address of a coroutine andcontains the corresponding continuation (which itself is a coroutine with apromise_type), it should be trivial to print the entire asynchronous stack.

This logic should be quite easily captured in a debugger script.

Examples to print asynchronous stack

Here is an example to print the asynchronous stack for the normal task implementation.

// debugging-example.cpp#include <coroutine>#include <iostream>#include <utility>struct task { struct promise_type { task get_return_object(); std::suspend_always initial_suspend() { return {}; } void unhandled_exception() noexcept {} struct FinalSuspend { std::coroutine_handle<> continuation; auto await_ready() noexcept { return false; } auto await_suspend(std::coroutine_handle<> handle) noexcept { return continuation; } void await_resume() noexcept {} }; FinalSuspend final_suspend() noexcept { return {continuation}; } void return_value(int res) { result = res; } std::coroutine_handle<> continuation = std::noop_coroutine(); int result = 0; }; task(std::coroutine_handle<promise_type> handle) : handle(handle) {} ~task() { if (handle) handle.destroy(); } auto operator co_await() { struct Awaiter { std::coroutine_handle<promise_type> handle; auto await_ready() { return false; } auto await_suspend(std::coroutine_handle<> continuation) { handle.promise().continuation = continuation; return handle; } int await_resume() { int ret = handle.promise().result; handle.destroy(); return ret; } }; return Awaiter{std::exchange(handle, nullptr)}; } int syncStart() { handle.resume(); return handle.promise().result; }private: std::coroutine_handle<promise_type> handle;};task task::promise_type::get_return_object() { return std::coroutine_handle<promise_type>::from_promise(*this);}namespace detail {template <int N>task chain_fn() { co_return N + co_await chain_fn<N - 1>();}template <>task chain_fn<0>() { // This is the default breakpoint. __builtin_debugtrap(); co_return 0;}} // namespace detailtask chain() { co_return co_await detail::chain_fn<30>();}int main() { std::cout << chain().syncStart() << "\n"; return 0;}

In the example, the task coroutine holds a continuation field,which would be resumed once the task completes.In another word, the continuation is the asynchronous caller for the task.Just like the normal function returns to its caller when the function completes.

So we can use the continuation field to construct the asynchronous stack:

# debugging-helper.pyimport gdbfrom gdb.FrameDecorator import FrameDecoratorclass SymValueWrapper(): def __init__(self, symbol, value): self.sym = symbol self.val = value def __str__(self): return str(self.sym) + " = " + str(self.val)def get_long_pointer_size(): return gdb.lookup_type('long').pointer().sizeofdef cast_addr2long_pointer(addr): return gdb.Value(addr).cast(gdb.lookup_type('long').pointer())def dereference(addr): return long(cast_addr2long_pointer(addr).dereference())class CoroutineFrame(object): def __init__(self, task_addr): self.frame_addr = task_addr self.resume_addr = task_addr self.destroy_addr = task_addr + get_long_pointer_size() self.promise_addr = task_addr + get_long_pointer_size() * 2 # In the example, the continuation is the first field member of the promise_type. # So they have the same addresses. # If we want to generalize the scripts to other coroutine types, we need to be sure # the continuation field is the first memeber of promise_type. self.continuation_addr = self.promise_addr def next_task_addr(self): return dereference(self.continuation_addr)class CoroutineFrameDecorator(FrameDecorator): def __init__(self, coro_frame): super(CoroutineFrameDecorator, self).__init__(None) self.coro_frame = coro_frame self.resume_func = dereference(self.coro_frame.resume_addr) self.resume_func_block = gdb.block_for_pc(self.resume_func) if self.resume_func_block == None: raise Exception('Not stackless coroutine.') self.line_info = gdb.find_pc_line(self.resume_func) def address(self): return self.resume_func def filename(self): return self.line_info.symtab.filename def frame_args(self): return [SymValueWrapper("frame_addr", cast_addr2long_pointer(self.coro_frame.frame_addr)), SymValueWrapper("promise_addr", cast_addr2long_pointer(self.coro_frame.promise_addr)), SymValueWrapper("continuation_addr", cast_addr2long_pointer(self.coro_frame.continuation_addr)) ] def function(self): return self.resume_func_block.function.print_name def line(self): return self.line_info.lineclass StripDecorator(FrameDecorator): def __init__(self, frame): super(StripDecorator, self).__init__(frame) self.frame = frame f = frame.function() self.function_name = f def __str__(self, shift = 2): addr = "" if self.address() == None else '%#x' % self.address() + " in " location = "" if self.filename() == None else " at " + self.filename() + ":" + str(self.line()) return addr + self.function() + " " + str([str(args) for args in self.frame_args()]) + locationclass CoroutineFilter: def create_coroutine_frames(self, task_addr): frames = [] while task_addr != 0: coro_frame = CoroutineFrame(task_addr) frames.append(CoroutineFrameDecorator(coro_frame)) task_addr = coro_frame.next_task_addr() return framesclass AsyncStack(gdb.Command): def __init__(self): super(AsyncStack, self).__init__("async-bt", gdb.COMMAND_USER) def invoke(self, arg, from_tty): coroutine_filter = CoroutineFilter() argv = gdb.string_to_argv(arg) if len(argv) == 0: try: task = gdb.parse_and_eval('__coro_frame') task = int(str(task.address), 16) except Exception: print ("Can't find __coro_frame in current context.\n" + "Please use `async-bt` in stackless coroutine context.") return elif len(argv) != 1: print("usage: async-bt <pointer to task>") return else: task = int(argv[0], 16) frames = coroutine_filter.create_coroutine_frames(task) i = 0 for f in frames: print '#'+ str(i), str(StripDecorator(f)) i += 1 returnAsyncStack()class ShowCoroFrame(gdb.Command): def __init__(self): super(ShowCoroFrame, self).__init__("show-coro-frame", gdb.COMMAND_USER) def invoke(self, arg, from_tty): argv = gdb.string_to_argv(arg) if len(argv) != 1: print("usage: show-coro-frame <address of coroutine frame>") return addr = int(argv[0], 16) block = gdb.block_for_pc(long(cast_addr2long_pointer(addr).dereference())) if block == None: print "block " + str(addr) + " is none." return # Disable demangling since gdb will treat names starting with `_Z`(The marker for Itanium ABI) specially. gdb.execute("set demangle-style none") coro_frame_type = gdb.lookup_type(block.function.linkage_name + ".coro_frame_ty") coro_frame_ptr_type = coro_frame_type.pointer() coro_frame = gdb.Value(addr).cast(coro_frame_ptr_type).dereference() gdb.execute("set demangle-style auto") gdb.write(coro_frame.format_string(pretty_structs = True))ShowCoroFrame()

Then let’s run:

$ clang++ -std=c++20 -g debugging-example.cpp -o debugging-example$ gdb ./debugging-example(gdb) # We've alreay set the breakpoint.(gdb) rProgram received signal SIGTRAP, Trace/breakpoint trap.detail::chain_fn<0> () at debugging-example2.cpp:7373 co_return 0;(gdb) # Executes the debugging scripts(gdb) source # Print the asynchronous stack(gdb) async-bt#0 0x401c40 in detail::chain_fn<0>() ['frame_addr = 0x441860', 'promise_addr = 0x441870', 'continuation_addr = 0x441870'] at debugging-example.cpp:71#1 0x4022d0 in detail::chain_fn<1>() ['frame_addr = 0x441810', 'promise_addr = 0x441820', 'continuation_addr = 0x441820'] at debugging-example.cpp:66#2 0x403060 in detail::chain_fn<2>() ['frame_addr = 0x4417c0', 'promise_addr = 0x4417d0', 'continuation_addr = 0x4417d0'] at debugging-example.cpp:66#3 0x403df0 in detail::chain_fn<3>() ['frame_addr = 0x441770', 'promise_addr = 0x441780', 'continuation_addr = 0x441780'] at debugging-example.cpp:66#4 0x404b80 in detail::chain_fn<4>() ['frame_addr = 0x441720', 'promise_addr = 0x441730', 'continuation_addr = 0x441730'] at debugging-example.cpp:66#5 0x405910 in detail::chain_fn<5>() ['frame_addr = 0x4416d0', 'promise_addr = 0x4416e0', 'continuation_addr = 0x4416e0'] at debugging-example.cpp:66#6 0x4066a0 in detail::chain_fn<6>() ['frame_addr = 0x441680', 'promise_addr = 0x441690', 'continuation_addr = 0x441690'] at debugging-example.cpp:66#7 0x407430 in detail::chain_fn<7>() ['frame_addr = 0x441630', 'promise_addr = 0x441640', 'continuation_addr = 0x441640'] at debugging-example.cpp:66#8 0x4081c0 in detail::chain_fn<8>() ['frame_addr = 0x4415e0', 'promise_addr = 0x4415f0', 'continuation_addr = 0x4415f0'] at debugging-example.cpp:66#9 0x408f50 in detail::chain_fn<9>() ['frame_addr = 0x441590', 'promise_addr = 0x4415a0', 'continuation_addr = 0x4415a0'] at debugging-example.cpp:66#10 0x409ce0 in detail::chain_fn<10>() ['frame_addr = 0x441540', 'promise_addr = 0x441550', 'continuation_addr = 0x441550'] at debugging-example.cpp:66#11 0x40aa70 in detail::chain_fn<11>() ['frame_addr = 0x4414f0', 'promise_addr = 0x441500', 'continuation_addr = 0x441500'] at debugging-example.cpp:66#12 0x40b800 in detail::chain_fn<12>() ['frame_addr = 0x4414a0', 'promise_addr = 0x4414b0', 'continuation_addr = 0x4414b0'] at debugging-example.cpp:66#13 0x40c590 in detail::chain_fn<13>() ['frame_addr = 0x441450', 'promise_addr = 0x441460', 'continuation_addr = 0x441460'] at debugging-example.cpp:66#14 0x40d320 in detail::chain_fn<14>() ['frame_addr = 0x441400', 'promise_addr = 0x441410', 'continuation_addr = 0x441410'] at debugging-example.cpp:66#15 0x40e0b0 in detail::chain_fn<15>() ['frame_addr = 0x4413b0', 'promise_addr = 0x4413c0', 'continuation_addr = 0x4413c0'] at debugging-example.cpp:66#16 0x40ee40 in detail::chain_fn<16>() ['frame_addr = 0x441360', 'promise_addr = 0x441370', 'continuation_addr = 0x441370'] at debugging-example.cpp:66#17 0x40fbd0 in detail::chain_fn<17>() ['frame_addr = 0x441310', 'promise_addr = 0x441320', 'continuation_addr = 0x441320'] at debugging-example.cpp:66#18 0x410960 in detail::chain_fn<18>() ['frame_addr = 0x4412c0', 'promise_addr = 0x4412d0', 'continuation_addr = 0x4412d0'] at debugging-example.cpp:66#19 0x4116f0 in detail::chain_fn<19>() ['frame_addr = 0x441270', 'promise_addr = 0x441280', 'continuation_addr = 0x441280'] at debugging-example.cpp:66#20 0x412480 in detail::chain_fn<20>() ['frame_addr = 0x441220', 'promise_addr = 0x441230', 'continuation_addr = 0x441230'] at debugging-example.cpp:66#21 0x413210 in detail::chain_fn<21>() ['frame_addr = 0x4411d0', 'promise_addr = 0x4411e0', 'continuation_addr = 0x4411e0'] at debugging-example.cpp:66#22 0x413fa0 in detail::chain_fn<22>() ['frame_addr = 0x441180', 'promise_addr = 0x441190', 'continuation_addr = 0x441190'] at debugging-example.cpp:66#23 0x414d30 in detail::chain_fn<23>() ['frame_addr = 0x441130', 'promise_addr = 0x441140', 'continuation_addr = 0x441140'] at debugging-example.cpp:66#24 0x415ac0 in detail::chain_fn<24>() ['frame_addr = 0x4410e0', 'promise_addr = 0x4410f0', 'continuation_addr = 0x4410f0'] at debugging-example.cpp:66#25 0x416850 in detail::chain_fn<25>() ['frame_addr = 0x441090', 'promise_addr = 0x4410a0', 'continuation_addr = 0x4410a0'] at debugging-example.cpp:66#26 0x4175e0 in detail::chain_fn<26>() ['frame_addr = 0x441040', 'promise_addr = 0x441050', 'continuation_addr = 0x441050'] at debugging-example.cpp:66#27 0x418370 in detail::chain_fn<27>() ['frame_addr = 0x440ff0', 'promise_addr = 0x441000', 'continuation_addr = 0x441000'] at debugging-example.cpp:66#28 0x419100 in detail::chain_fn<28>() ['frame_addr = 0x440fa0', 'promise_addr = 0x440fb0', 'continuation_addr = 0x440fb0'] at debugging-example.cpp:66#29 0x419e90 in detail::chain_fn<29>() ['frame_addr = 0x440f50', 'promise_addr = 0x440f60', 'continuation_addr = 0x440f60'] at debugging-example.cpp:66#30 0x41ac20 in detail::chain_fn<30>() ['frame_addr = 0x440f00', 'promise_addr = 0x440f10', 'continuation_addr = 0x440f10'] at debugging-example.cpp:66#31 0x41b9b0 in chain() ['frame_addr = 0x440eb0', 'promise_addr = 0x440ec0', 'continuation_addr = 0x440ec0'] at debugging-example.cpp:77

Now we get the complete asynchronous stack!It is also possible to print other asynchronous stack which doesn’t live in the top of the stack.We can make it by passing the address of the corresponding coroutine frame to async-bt command.

By the debugging scripts, we can print any coroutine frame too as long as we know the address.For example, we can print the coroutine frame for detail::chain_fn<18>() in the above example.From the log record, we know the address of the coroutine frame is 0x4412c0 in the run. Then we can:

(gdb) show-coro-frame 0x4412c0{ __resume_fn = 0x410960 <detail::chain_fn<18>()>, __destroy_fn = 0x410d60 <detail::chain_fn<18>()>, __promise = { continuation = { _M_fr_ptr = 0x441270 }, result = 0 }, struct_Awaiter_0 = { struct_std____n4861__coroutine_handle_0 = { struct_std____n4861__coroutine_handle = { PointerType = 0x441310 } } }, struct_task_1 = { struct_std____n4861__coroutine_handle_0 = { struct_std____n4861__coroutine_handle = { PointerType = 0x0 } } }, struct_task__promise_type__FinalSuspend_2 = { struct_std____n4861__coroutine_handle = { PointerType = 0x0 } }, __coro_index = 1 '\001', struct_std____n4861__suspend_always_3 = { __int_8 = 0 '\000' }

Get the living coroutines

Another useful task when debugging coroutines is to enumerate the list ofliving coroutines, which is often done with threads. While technicallypossible, this task is not recommended in production code as it is costly atruntime. One such solution is to store the list of currently running coroutinesin a collection:

inline std::unordered_set<void*> lived_coroutines;// For all promise_type we want to recordclass promise_type {public: promise_type() { // Note to avoid data races lived_coroutines.insert(std::coroutine_handle<promise_type>::from_promise(*this).address()); } ~promise_type() { // Note to avoid data races lived_coroutines.erase(std::coroutine_handle<promise_type>::from_promise(*this).address()); }};

In the above code snippet, we save the address of every lived coroutine in thelived_coroutines unordered_set. As before, once we know the address of thecoroutine we can derive the function, promise_type, and other members of theframe. Thus, we could print the list of lived coroutines from that collection.

Please note that the above is expensive from a storage perspective, and requiressome level of locking (not pictured) on the collection to prevent data races.

Top Articles
Latest Posts
Article information

Author: Wyatt Volkman LLD

Last Updated: 2023/06/21

Views: 6027

Rating: 4.6 / 5 (66 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Wyatt Volkman LLD

Birthday: 1992-02-16

Address: Suite 851 78549 Lubowitz Well, Wardside, TX 98080-8615

Phone: +67618977178100

Job: Manufacturing Director

Hobby: Running, Mountaineering, Inline skating, Writing, Baton twirling, Computer programming, Stone skipping

Introduction: My name is Wyatt Volkman LLD, I am a handsome, rich, comfortable, lively, zealous, graceful, gifted person who loves writing and wants to share my knowledge and understanding with you.